Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
Cell Genom ; 3(10): 100401, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37868038

RESUMO

Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare variants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic Study of Atherosclerosis, which included several hundred individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across two time points, 10 years apart. We evaluated each multi-omics phenotype's ability to separately and jointly inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62 times and rare frameshift variants 216 times as frequently as controls, compared to 13-27 times as frequently for expression or protein effects alone. We extended a Bayesian hierarchical model, "Watershed," to prioritize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach, we identified rare variants that exhibited large effect sizes on multiple complex traits including height, schizophrenia, and Alzheimer's disease.

3.
Nat Commun ; 14(1): 4646, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532724

RESUMO

Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.


Assuntos
Fibrilação Atrial , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Fatores de Risco , Frequência Cardíaca/genética , Predisposição Genética para Doença , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único
4.
Nat Commun ; 14(1): 3202, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268629

RESUMO

We assess performance and limitations of polygenic risk scores (PRSs) for multiple blood pressure (BP) phenotypes in diverse population groups. We compare "clumping-and-thresholding" (PRSice2) and LD-based (LDPred2) methods to construct PRSs from each of multiple GWAS, as well as multi-PRS approaches that sum PRSs with and without weights, including PRS-CSx. We use datasets from the MGB Biobank, TOPMed study, UK biobank, and from All of Us to train, assess, and validate PRSs in groups defined by self-reported race/ethnic background (Asian, Black, Hispanic/Latino, and White). For both SBP and DBP, the PRS-CSx based PRS, constructed as a weighted sum of PRSs developed from multiple independent GWAS, perform best across all race/ethnic backgrounds. Stratified analysis in All of Us shows that PRSs are better predictive of BP in females compared to males, individuals without obesity, and middle-aged (40-60 years) compared to older and younger individuals.


Assuntos
Saúde da População , Masculino , Feminino , Humanos , Pressão Sanguínea/genética , Fatores de Risco , Herança Multifatorial/genética , Etnicidade/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença
5.
Circ Genom Precis Med ; 15(6): e003946, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334310

RESUMO

BACKGROUND: Traditional cardiovascular risk factors and the underlying genetic risk of elevated blood pressure (BP) determine an individual's composite risk of developing adverse cardiovascular events. We sought to evaluate the relative contributions of the traditional cardiovascular risk factors to the development of adverse cardiovascular events in the context of varying BP genetic risk profiles. METHODS: Genome-wide polygenic risk score (PRS) was computed using multiancestry genome-wide association estimates among US adults who underwent whole-genome sequencing in the Trans-Omics for Precision program. Individuals were stratified into high, intermediate, and low genetic risk groups (>80th, 20-80th, and <20th centiles of systolic BP [SBP] PRS). Based on the ACC/AHA Pooled Cohort Equations, participants were stratified into low and high (10 year-atherosclerotic cardiovascular disease [CVD] risk: <10% or ≥10%) cardiovascular risk factor profile groups. The primary study outcome was incident cardiovascular event (composite of incident heart failure, incident stroke, and incident coronary heart disease). RESULTS: Among 21 897 US adults (median age: 56 years; 56.0% women; 35.8% non-White race/ethnicity), 1 SD increase in the SBP PRS, computed using 1.08 million variants, was associated with SBP (ß: 4.39 [95% CI, 4.13-4.65]) and hypertension (odds ratio, 1.50 [95% CI, 1.46-1.55]), respectively. This association was robustly seen across racial/ethnic groups. Each SD increase in SBP PRS was associated with a higher risk of the incident CVD (multivariable-adjusted hazards ratio, 1.07 [95% CI, 1.04-1.10]) after controlling for ACC/AHA Pooled Cohort Equations risk scores. Among individuals with a high SBP PRS, low atherosclerotic CVD risk was associated with a 58% lower hazard for incident CVD (multivariable-adjusted hazards ratio, 0.42 [95% CI, 0.36-0.50]) compared to those with high atherosclerotic CVD risk. A similar pattern was noted in intermediate and low genetic risk groups. CONCLUSIONS: In a multiancestry cohort of >21 000 US adults, genome-wide SBP PRS was associated with BP traits and adverse cardiovascular events. Adequate control of modifiable cardiovascular risk factors may reduce the predisposition to adverse cardiovascular events among those with a high SBP PRS.


Assuntos
Doenças Cardiovasculares , Hipertensão , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Pressão Sanguínea/genética , Doenças Cardiovasculares/etiologia , Estudo de Associação Genômica Ampla , Hipertensão/genética , Fatores de Risco
6.
iScience ; 25(10): 105210, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36267918

RESUMO

Premature atrial contractions (PACs) are frequently observed on electrocardiograms and are associated with increased risks of atrial fibrillation (AF), stroke, and mortality. In this study, we aimed to identify genetic susceptibility loci for PAC frequency. We performed a genome-wide association study meta-analysis with PAC frequency obtained from ambulatory cardiac monitoring in 4,831 individuals of European ancestry. We identified a genome-wide significant locus at the SCN5A gene. The lead variant, rs7373862, located in an intron of SCN5A, was associated with an increase of 0.12 [95% CI 0.08-0.16] standard deviations of the normalized PAC frequency per risk allele. Among genetic variants previously associated with AF, there was a significant enrichment in concordance of effect for PAC frequency (n = 73/106, p = 5.1 × 10-5). However, several AF risk loci, including PITX2, were not associated with PAC frequency. These findings suggest the existence of both shared and distinct genetic mechanisms for PAC frequency and AF.

8.
Prog Cardiovasc Dis ; 74: 19-27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35952728

RESUMO

BACKGROUND: Polygenic risk scores (PRS) are associated with atherosclerotic cardiovascular disease (ASCVD) events. We studied incident ASCVD among individuals with absent coronary artery calcium (CAC = 0), to investigate the association of PRS with incident ASCVD among such individuals. METHODS: Data was used from Multi-Ethnic Study of Atherosclerosis (MESA), a prospective cohort study of participants free of clinical CVD at baseline. PRS were developed based on a literature-derived list of single-nucleotide polymorphisms (SNPs) weighted by effect size. The coronary heart disease (CHD) PRS contained 180 SNPs, and the stroke PRS had 32 SNPs. These SNPs were combined to compute an ASCVD PRS. The PRS were calculated among 3132 participants with CAC = 0. Multivariable-adjusted Cox proportional hazards models evaluated the association between each PRS (top 20% vs bottom 50%) and ASCVD. RESULTS: The study population included 3132 individuals with CAC = 0 [mean (SD) age 58 (9) years; 63% female, 33% White, 31% Black, 12% Chinese-American, 24% Hispanic]. Over a median follow-up of 16 years, there were 108 incident CHD events and 93 stroke events. ASCVD event rates were generally <7.5 per 1000-person years for all ASCVD events regardless of PRS risk stratum. The ASCVD PRS was significantly associated with incident ASCVD: (HR; 95% CI) (1.63; 1.11, 2.39). The CHD PRS was not associated with any ASCVD outcome, whereas the stroke PRS was significantly associated with ASCVD (1.84; 1.27, 2.68), CHD (1.79; 1.05, 3.06), and stroke (1.96; 1.19, 3.23). The stroke PRS results were significant among women and non-Whites. CONCLUSIONS: Among individuals with CAC = 0, the ASCVD PRS was associated with incident ASCVD events. This appears to be driven by genetic variants related to stroke but not CHD, and particularly among women and non-Whites. ASCVD event rates remained below the threshold recommended for consideration for initiation of statin therapy even in the high PRS groups.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Doença da Artéria Coronariana , Acidente Vascular Cerebral , Calcificação Vascular , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Vasos Coronários/diagnóstico por imagem , Cálcio , Doenças Cardiovasculares/epidemiologia , Estudos Prospectivos , Medição de Risco/métodos , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Aterosclerose/genética , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/genética , Fatores de Risco , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/epidemiologia , Calcificação Vascular/genética
9.
Commun Biol ; 5(1): 856, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995843

RESUMO

Polygenic risk scores (PRS) are commonly used to quantify the inherited susceptibility for a trait, yet they fail to account for non-linear and interaction effects between single nucleotide polymorphisms (SNPs). We address this via a machine learning approach, validated in nine complex phenotypes in a multi-ancestry population. We use an ensemble method of SNP selection followed by gradient boosted trees (XGBoost) to allow for non-linearities and interaction effects. We compare our results to the standard, linear PRS model developed using PRSice, LDpred2, and lassosum2. Combining a PRS as a feature in an XGBoost model results in a relative increase in the percentage variance explained compared to the standard linear PRS model by 22% for height, 27% for HDL cholesterol, 43% for body mass index, 50% for sleep duration, 58% for systolic blood pressure, 64% for total cholesterol, 66% for triglycerides, 77% for LDL cholesterol, and 100% for diastolic blood pressure. Multi-ancestry trained models perform similarly to specific racial/ethnic group trained models and are consistently superior to the standard linear PRS models. This work demonstrates an effective method to account for non-linearities and interaction effects in genetics-based prediction models.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Humanos , Aprendizado de Máquina , Herança Multifatorial
10.
Nat Commun ; 13(1): 5106, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042188

RESUMO

Accurate and efficient classification of variant pathogenicity is critical for research and clinical care. Using data from three large studies, we demonstrate that population-based associations between rare variants and quantitative endophenotypes for three monogenic diseases (low-density-lipoprotein cholesterol for familial hypercholesterolemia, electrocardiographic QTc interval for long QT syndrome, and glycosylated hemoglobin for maturity-onset diabetes of the young) provide evidence for variant pathogenicity. Effect sizes are associated with pathogenic ClinVar assertions (P < 0.001 for each trait) and discriminate pathogenic from non-pathogenic variants (area under the curve 0.82-0.84 across endophenotypes). An effect size threshold of ≥ 0.5 times the endophenotype standard deviation nominates up to 35% of rare variants of uncertain significance or not in ClinVar in disease susceptibility genes with pathogenic potential. We propose that variant associations with quantitative endophenotypes for monogenic diseases can provide evidence supporting pathogenicity.


Assuntos
Endofenótipos , Síndrome do QT Longo , Suscetibilidade a Doenças , Humanos , Virulência
11.
Nat Genet ; 54(6): 761-771, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654975

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease. Using a proxy NAFLD definition of chronic elevation of alanine aminotransferase (cALT) levels without other liver diseases, we performed a multiancestry genome-wide association study (GWAS) in the Million Veteran Program (MVP) including 90,408 cALT cases and 128,187 controls. Seventy-seven loci exceeded genome-wide significance, including 25 without prior NAFLD or alanine aminotransferase associations, with one additional locus identified in European American-only and two in African American-only analyses (P < 5 × 10-8). External replication in histology-defined NAFLD cohorts (7,397 cases and 56,785 controls) or radiologic imaging cohorts (n = 44,289) replicated 17 single-nucleotide polymorphisms (SNPs) (P < 6.5 × 10-4), of which 9 were new (TRIB1, PPARG, MTTP, SERPINA1, FTO, IL1RN, COBLL1, APOH and IFI30). Pleiotropy analysis showed that 61 of 77 multiancestry and all 17 replicated SNPs were jointly associated with metabolic and/or inflammatory traits, revealing a complex model of genetic architecture. Our approach integrating cALT, histology and imaging reveals new insights into genetic liability to NAFLD.


Assuntos
Estudo de Associação Genômica Ampla , Hepatopatia Gordurosa não Alcoólica , Alanina Transaminase , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipase/genética , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores
12.
In Vivo ; 36(4): 1761-1768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35738636

RESUMO

BACKGROUND/AIM: Hydration and hydroxyurea (HU) can modify sickle cell disease (SCD) severity. Optimal nutrition and L-glutamine (Gln) may provide further amelioration. PATIENTS AND METHODS: Reviews of medical records and nutrition surveys were used to investigate severity of pediatric patients with SCD in relation to nutrition, growth, hematologic parameters, and diseasemodifying agents. RESULTS: Among 25 females and 25 males (9.1±7 years), beta-globin genotypes were: HbSS/Sß°, 60%; HbSC, 32%; HbSß+, 8%. The mean number of annual pain crises (APC) was 0.97±1.1. APCs increased ≥2-fold as HbF dropped to <10% with age. Proper hydration and nutrition correlated with younger ages and fewer APCs. Height and weight Z-scores were ≤-1SD in 20% of 35 surveyed patients (12±7.8 years), who had more APCs (2.5±2.5 vs. 1±1.3, p=0.03). Prealbumin levels were overall low. Twenty-two of 28 patients on HU reported ≥90% adherence - with higher mean corpuscular volume (92±9.6 vs. 74±10 f/l, p<0.01). Seventy percent of Gln prescriptions were filled. Compliance over 23 months was ≥70% in 12 patients, including 2 on chronic transfusion. Of 10 evaluable patients, 6 (8.8±2.2 years) had fewer APCs with Gln (mean 0.2 vs. 0.9, p=0.016), with increasing prealbumin levels (14.1 to 15.8 mg/dl, p=0.1). CONCLUSION: Younger, and well-nourished, well-hydrated patients have a milder clinic course. Disease severity was the worse in undernourished teenagers with suboptimal compliance. L-Glutamine with prealbumin monitoring should be considered for further evaluation in pediatric SCD.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Glutamina , Estado Nutricional , Cooperação do Paciente , Adolescente , Anemia Falciforme/tratamento farmacológico , Antidrepanocíticos/uso terapêutico , Criança , Feminino , Glutamina/uso terapêutico , Hospitais Públicos , Humanos , Hidroxiureia/uso terapêutico , Masculino , Pré-Albumina
13.
Nat Commun ; 13(1): 3549, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729114

RESUMO

In a multi-stage analysis of 52,436 individuals aged 17-90 across diverse cohorts and biobanks, we train, test, and evaluate a polygenic risk score (PRS) for hypertension risk and progression. The PRS is trained using genome-wide association studies (GWAS) for systolic, diastolic blood pressure, and hypertension, respectively. For each trait, PRS is selected by optimizing the coefficient of variation (CV) across estimated effect sizes from multiple potential PRS using the same GWAS, after which the 3 trait-specific PRSs are combined via an unweighted sum called "PRSsum", forming the HTN-PRS. The HTN-PRS is associated with both prevalent and incident hypertension at 4-6 years of follow up. This association is further confirmed in age-stratified analysis. In an independent biobank of 40,201 individuals, the HTN-PRS is confirmed to be predictive of increased risk for coronary artery disease, ischemic stroke, type 2 diabetes, and chronic kidney disease.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Adulto , Diabetes Mellitus Tipo 2/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Herança Multifatorial/genética , Prevalência , Fatores de Risco
14.
Circulation ; 145(20): 1524-1533, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35389749

RESUMO

BACKGROUND: Rare sequence variation in genes underlying cardiac repolarization and common polygenic variation influence QT interval duration. However, current clinical genetic testing of individuals with unexplained QT prolongation is restricted to examination of monogenic rare variants. The recent emergence of large-scale biorepositories with sequence data enables examination of the joint contribution of rare and common variations to the QT interval in the population. METHODS: We performed a genome-wide association study of the QTc in 84 630 UK Biobank participants and created a polygenic risk score (PRS). Among 26 976 participants with whole-genome sequencing and ECG data in the TOPMed (Trans-Omics for Precision Medicine) program, we identified 160 carriers of putative pathogenic rare variants in 10 genes known to be associated with the QT interval. We examined QTc associations with the PRS and with rare variants in TOPMed. RESULTS: Fifty-four independent loci were identified by genome-wide association study in the UK Biobank. Twenty-one loci were novel, of which 12 were replicated in TOPMed. The PRS composed of 1 110 494 common variants was significantly associated with the QTc in TOPMed (ΔQTc/decile of PRS=1.4 ms [95% CI, 1.3 to 1.5]; P=1.1×10-196). Carriers of putative pathogenic rare variants had longer QTc than noncarriers (ΔQTc=10.9 ms [95% CI, 7.4 to 14.4]). Of individuals with QTc>480 ms, 23.7% carried either a monogenic rare variant or had a PRS in the top decile (3.4% monogenic, 21% top decile of PRS). CONCLUSIONS: QTc duration in the population is influenced by both rare variants in genes underlying cardiac repolarization and polygenic risk, with a sizeable contribution from polygenic risk. Comprehensive assessment of the genetic determinants of QTc prolongation includes incorporation of both polygenic and monogenic risk.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome do QT Longo , Eletrocardiografia , Heterozigoto , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Herança Multifatorial , Sequenciamento Completo do Genoma
15.
J Med Case Rep ; 16(1): 106, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287717

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase deficiency is a rarely recognized predisposing factor for rhabdomyolysis. Rhabdomyolysis with coronavirus disease 2019 has been increasingly seen during the pandemic. We report the uncommon occurrence of coronavirus disease 2019 pneumonia, severe rhabdomyolysis, and acute renal failure in the setting of glucose-6-phosphate dehydrogenase deficiency. CASE PRESENTATION: A 19-year-old African American male presented with myalgias, diaphoresis, and dark urine. Testing for severe acute respiratory syndrome coronavirus 2 was positive. He had severe rhabdomyolysis with creatine kinase levels up to 346,695 U/L. He was oliguric and eventually required hemodialysis. Progressive hypoxemia, methemoglobinemia, and hemolytic anemia occurred following one dose of rasburicase for hyperuricemia. Glucose-6-phosphate dehydrogenase deficiency was diagnosed. Full recovery followed a single volume exchange transfusion and simple packed red blood cell transfusions. CONCLUSIONS: Glucose-6-phosphate dehydrogenase deficiency may predispose individuals to rhabdomyolysis due to severe acute respiratory syndrome coronavirus 2, presumably due to altered host responses to viral oxidative stress. Early screening for glucose-6-phosphate dehydrogenase deficiency can be useful for management of patients with rhabdomyolysis.


Assuntos
COVID-19 , Deficiência de Glucosefosfato Desidrogenase , Metemoglobinemia , Pneumonia , Rabdomiólise , Adulto , COVID-19/complicações , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Humanos , Masculino , Metemoglobinemia/complicações , Metemoglobinemia/diagnóstico , Pneumonia/complicações , Rabdomiólise/etiologia , Adulto Jovem
16.
Circ Genom Precis Med ; 14(6): e003460, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34732054

RESUMO

BACKGROUND: Elevated cardiac troponin levels in blood are associated with increased risk of cardiovascular diseases and mortality. Cardiac troponin levels are heritable, but their genetic architecture remains elusive. METHODS: We conducted a transethnic genome-wide association analysis on high-sensitivity cTnT (cardiac troponin T; hs-cTnT) and high-sensitivity cTnI (cardiac troponin I; hs-cTnI) levels in 24 617 and 14 336 participants free of coronary heart disease and heart failure from 6 population-based cohorts, followed by a series of bioinformatic analyses to decipher the genetic architecture of hs-cTnT and hs-cTnI. RESULTS: We identified 4 genome-wide significant loci for hs-cTnT including a novel locus rs3737882 in PPFIA4 and 3 previously reported loci at NCOA2, TRAM1, and BCL2. One known locus at VCL was replicated for hs-cTnI. One copy of C allele for rs3737882 was associated with a 6% increase in hs-cTnT levels (minor allele frequency, 0.18; P=2.80×10-9). We observed pleiotropic loci located at BAG3 and ANO5. The proportions of variances explained by single-nucleotide polymorphisms were 10.15% and 7.74% for hs-cTnT and hs-cTnI, respectively. Single-nucleotide polymorphisms were colocalized with BCL2 expression in heart tissues and hs-cTnT and with ANO5 expression in artery, heart tissues, and whole blood and both troponins. Mendelian randomization analyses showed that genetically increased hs-cTnT and hs-cTnI levels were associated with higher odds of atrial fibrillation (odds ratio, 1.38 [95% CI, 1.25-1.54] for hs-cTnT and 1.21 [95% CI, 1.06-1.37] for hs-cTnI). CONCLUSIONS: We identified a novel genetic locus associated with hs-cTnT in a multiethnic population and found that genetically regulated troponin levels were associated with atrial fibrillation.


Assuntos
Fibrilação Atrial , Troponina T , Proteínas Adaptadoras de Transdução de Sinal , Anoctaminas , Proteínas Reguladoras de Apoptose , Fibrilação Atrial/genética , Biomarcadores , Estudo de Associação Genômica Ampla , Humanos , Troponina I/genética , Troponina T/genética
17.
Biochem J ; 478(17): 3185-3204, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34405853

RESUMO

p97 protein is a highly conserved, abundant, functionally diverse, structurally dynamic homohexameric AAA enzyme-containing N, D1, and D2 domains. A truncated p97 protein containing the N and D1 domains and the D1-D2 linker (ND1L) exhibits 79% of wild-type (WT) ATPase activity whereas the ND1 domain alone without the linker only has 2% of WT activity. To investigate the relationship between the D1-D2 linker and the D1 domain, we produced p97 ND1L mutants and demonstrated that this 22-residue linker region is essential for D1 ATPase activity. The conserved amino acid leucine 464 (L464) is critical for regulating D1 and D2 ATPase activity by p97 cofactors p37, p47, and Npl4-Ufd1 (NU). Changing leucine to alanine, proline, or glutamate increased the maximum rate of ATP turnover (kcat) of p47-regulated ATPase activities for these mutants, but not for WT. p37 and p47 increased the kcat of the proline substituted linker, suggesting that they induced linker conformations facilitating ATP hydrolysis. NU inhibited D1 ATPase activities of WT and mutant ND1L proteins, but activated D2 ATPase activity of full-length p97. To further understand the mutant mechanism, we used single-particle cryo-EM to visualize the full-length p97L464P and revealed the conformational change of the D1-D2 linker, resulting in a movement of the helix-turn-helix motif (543-569). Taken together with the biochemical and structural results we conclude that the linker helps maintain D1 in a competent conformation and relays the communication to/from the N-domain to the D1 and D2 ATPase domains, which are ∼50 Šaway.


Assuntos
Leucina/metabolismo , Domínios Proteicos/genética , Transdução de Sinais/genética , Proteína com Valosina/química , Proteína com Valosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Ativação Enzimática/genética , Células HeLa , Sequências Hélice-Volta-Hélice/genética , Humanos , Hidrólise , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Ligação Proteica/genética , Transfecção , Proteína com Valosina/genética
18.
Circ Genom Precis Med ; 14(4): e003300, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34319147

RESUMO

BACKGROUND: Alterations in electrocardiographic (ECG) intervals are well-known markers for arrhythmia and sudden cardiac death (SCD) risk. While the genetics of arrhythmia syndromes have been studied, relations between electrocardiographic intervals and rare genetic variation at a population level are poorly understood. METHODS: Using a discovery sample of 29 000 individuals with whole-genome sequencing from Trans-Omics in Precision Medicine and replication in nearly 100 000 with whole-exome sequencing from the UK Biobank and MyCode, we examined associations between low-frequency and rare coding variants with 5 routinely measured electrocardiographic traits (RR, P-wave, PR, and QRS intervals and corrected QT interval). RESULTS: We found that rare variants associated with population-based electrocardiographic intervals identify established monogenic SCD genes (KCNQ1, KCNH2, and SCN5A), a controversial monogenic SCD gene (KCNE1), and novel genes (PAM and MFGE8) involved in cardiac conduction. Loss-of-function and pathogenic SCN5A variants, carried by 0.1% of individuals, were associated with a nearly 6-fold increased odds of the first-degree atrioventricular block (P=8.4×10-5). Similar variants in KCNQ1 and KCNH2 (0.2% of individuals) were associated with a 23-fold increased odds of marked corrected QT interval prolongation (P=4×10-25), a marker of SCD risk. Incomplete penetrance of such deleterious variation was common as over 70% of carriers had normal electrocardiographic intervals. CONCLUSIONS: Our findings indicate that large-scale high-depth sequence data and electrocardiographic analysis identifies monogenic arrhythmia susceptibility genes and rare variants with large effects. Known pathogenic variation in conventional arrhythmia and SCD genes exhibited incomplete penetrance and accounted for only a small fraction of marked electrocardiographic interval prolongation.


Assuntos
Morte Súbita Cardíaca/etnologia , Eletrocardiografia , Predisposição Genética para Doença , Variação Genética , Heterozigoto , Síndrome do QT Longo , Feminino , Humanos , Síndrome do QT Longo/etnologia , Síndrome do QT Longo/genética , Masculino , Sequenciamento do Exoma
20.
BMC Med ; 18(1): 246, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32933497

RESUMO

BACKGROUND: Mechanistic studies suggest that mitochondria DNA (mtDNA) dysfunction may be associated with increased risk of atrial fibrillation (AF). The association between mtDNA copy number (mtDNA-CN) and incident AF in the general population, however, remains unknown. METHODS: We conducted prospective analyses of 19,709 participants from the Atherosclerosis Risk in Communities Study (ARIC), the Multi-Ethnic Study of Atherosclerosis (MESA), and the Cardiovascular Health Study (CHS). mtDNA-CN from the peripheral blood was calculated from probe intensities on the Affymetrix Genome-Wide Human single nucleotide polymorphisms (SNP) Array 6.0 in ARIC and MESA and from multiplexed real-time quantitative polymerase chain reaction (qPCR) in CHS. Incident AF cases were identified through electrocardiograms, review of hospital discharge codes, Medicare claims, and death certificates. RESULTS: The median follow-up time was 21.4 years in ARIC, 12.9 years in MESA, and 11.0 years in CHS, during which 4021 participants developed incident atrial fibrillation (1761 in ARIC, 790 in MESA, and 1470 in CHS). In fully adjusted models, participants with the lowest quintile of mitochondria DNA copy number had an overall 13% increased risk (95% CI 1 to 27%) of incident atrial fibrillation compared to those with the highest quintile. Dose-response spline analysis also showed an inverse association between mitochondria DNA copy number and hazard for atrial fibrillation for all three cohorts. These associations were consistent across subgroups. CONCLUSIONS: Mitochondria DNA copy number was inversely associated with the risk of AF independent of traditional cardiovascular risk factors. These findings implicate mitochondria DNA copy number as a novel risk factor for atrial fibrillation. Further research is warranted to understand the underlying mechanisms and to evaluate the role of mitochondria DNA copy number in the management of atrial fibrillation risk.


Assuntos
Fibrilação Atrial/genética , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Fibrilação Atrial/patologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...